
Using printk to debug Linux

In Linux debugging, adding printk and other printing functions can solve most of

the problems. In the default Linux code, you can often see more advanced macros

that encapsulate printk(), such as dev_info(), dev_dbg(), pr_info(), pr_debug(), etc.

However, some information is not output to the console (serial port). This article

takes i.MX8MP EVK, L6.1.36 Linux version as an example to list some common

debugging methods in Linux using printk:

• Printk level definition, how to adjust the log level

• Dynamic debug: When running Linux, the dev_dbg, pr_debug, etc. of the

specified driver file are output to the console (serial port)

• Static debug: When compiling the kernel, the dev_dbg, pr_debug, etc. of the

specified driver file are output to the console (serial port)

• Modify the kernel top-level Makefile to output the dev_dbg, pr_debug, etc. of

all driver files to the console (serial port)

• Use initcall_debug to track initcall

• Debug of other modules: Such as drm debug

• Manual WARN_ON(1), BUG_ON(1) to view the stack backtrace

1. Book the board:

Open the cloud lab website, Click the login button in the upper right corner to enter

your account and password.

https://aiotcloud.nxp.com.cn/

After logging in, click on “Hardware -> i.MX Evaluation and Development Board ->

i.MX 8M Plus” in sequence.

Find the i.MX 8M Plus with status “AVAILABLE NOW”，then click “8MPLUSLPD4-PEVK

“ to enter the book page.

Then click the orange “BOOK NOW” button：

Choose “USE NOW”, fill in the “END HOUR” and “END MINUTE” and click the

“CONFIRM BOOK”.

The page should move to “MY BOOKS” page, please click the blue “DEBUG” button

to start debug the board.

Page should automatically jump to the physical page of the board and the system

startup log page. So far, the board has been scheduled and started successfully.

2. Printk level definition, how to adjust the log level:

The kernel print statement printk() will output kernel information to the kernel

information buffer, which is a ring buffer. If too many messages are put into it, the

previous messages will be flushed out. The Linux kernel can expand the buffer size by

adjusting the CONFIG_LOG_BUF_SHIFT macro.

Printk() defines 8 message levels, 0 to 7. The larger the value is, the lower the level

and the less important the message. Level 0 is an emergency and level 7 is a debug

level.

vi include/linux/kern_levels.h

#define KERN_EMERG KERN_SOH "0" /* system is unusable */

#define KERN_ALERT KERN_SOH "1" /* action must be taken immediately */

#define KERN_CRIT KERN_SOH "2" /* critical conditions */

#define KERN_ERR KERN_SOH "3" /* error conditions */

#define KERN_WARNING KERN_SOH "4" /* warning conditions */

#define KERN_NOTICE KERN_SOH "5" /* normal but significant condition */

#define KERN_INFO KERN_SOH "6" /* informational */

#define KERN_DEBUG KERN_SOH "7" /* debug-level messages */

Among them, KERN_EMERG (level 0) is an emergency event, usually the information

appear before the system crashes. KERN_ERR (level 1) is used to report error status,

and device drivers often use this level of printing to report the hardware problems.

KERN_INFO (level 6) is kernel prompt information, and drivers often use this level of

printing to report hardware information when starting. KERN_DEBUG (level 7) is

debugging information.

Users can directly use printk without flags to print. The default priority is 4, that is,

directly printk("XXX");. You can also choose to add a print level, such as using

printk(KERN_DEBUG "XXX"); or printk(KERN_INFO "XXX").

When printing, you can use __func__ to output the function name where printk is

located, use __LINE__ to output the line number of the code, and use __FILE__ to

output the file name of the source code.

For example, compile the kernel source code according to "Compile the kernel image

and run it on the AIoT lab development board.docx", and add the following print to

the source code:

git diff

diff --git a/drivers/gpu/drm/bridge/sec-dsim.c b/drivers/gpu/drm/bridge/sec-dsim.c

index fc9ca98f6ef7..ea5fbec61209 100644

--- a/drivers/gpu/drm/bridge/sec-dsim.c

+++ b/drivers/gpu/drm/bridge/sec-dsim.c

@@ -1146,6 +1146,9 @@ struct dsim_pll_pms *sec_mipi_dsim_calc_pmsk(struct

sec_mipi_dsim *dsim)

 struct sec_mipi_dsim_range pr_new = *prange;

 struct sec_mipi_dsim_range sr_new = *srange;

+ printk(KERN_INFO "sec_mipi_dsim_calc_pmsk start, function name is %s,\

+ line is %d, file name is %s\n ", __func__, __LINE__, __FILE__);

+

 pll_pms = devm_kzalloc(dev, sizeof(*pll_pms), GFP_KERNEL);

 if (!pll_pms) {

 dev_err(dev, "Unable to allocate 'pll_pms'\n");

Upload the compiled kernel Image to the TFTP directory of the 8MPLUSLPD4-

PEVK-3 development board in the following way.

Then click the PowerReset EVK button to restart the development board. You can see

the following printout. This can be used as a debugging method.

The output level of printk() can be checked by running the following command:

cat /proc/sys/kernel/printk

The result has 4 values, they are:

(1) The log level of the console (usually the serial port), console_loglevel: the current

printing level. Logs with a higher priority than this value will be printed to the

console.

(2) Default message level, default_message_loglevel: Print messages without priority

prefix, that is, directly printk("XXX"); messages. The default value is controlled by

the kernel macro CONFIG_MESSAGE_LOGLEVEL_DEFAULT, the default value is 4,

and the value range is 1~7.

(3) Minimum console log level, minimum_console_loglevel: The minimum value that

the console log level can be set to (usually 1).

(4) Default console log level, default_console_loglevel: The default value of the

console log level. The default value is controlled by the kernel macro

CONFIG_CONSOLE_LOGLEVEL_DEFAULT, the default value is 7, and the value

range is 1~15.

The following command can be used to modify the log level of the console. The

following command changes it to 8:

echo 8 4 1 7> /proc/sys/kernel/printk

Or by following command:

dmesg -n 8

In the Linux default code, you will often see more advanced macros that call printk,

such as dev_info, dev_dbg, pr_info, pr_debug, etc. However, some information is not

output to the console (serial port).

Take i.MX8MP EVK, L6.1.36 Linux version as an example. If the default Linux kernel is

used, during the boot process and when viewing the boot information using dmesg,

you can see that pr_debug(), dev_dbg(), and printk(KERN _DEBUG "XXX"); and other

information are not output to the console (serial port). That is, the debugging

information of KERN_DEBUG (level 7) is not output to the serial port. The debugging

information of message levels 0~6 can be output to the serial port.

Sometimes when debugging the Linux kernel, we want to output information such as

pr_debug(), dev_dbg(), and printk(KERN DEBUG "XXX") of certain files to the console

(serial port). How to do it? At this time, we need to use dynamic debug or static debug.

3. Dynamic debug:

The Dynamic debug (dyndbg) function allows user space to dynamically control the

opening and closing of the Linux kernel KERN_DEBUG type log at runtime, through

the file node /sys/kernel/debug/dynamic_debug/control exported by debugfs.

When dynamic debugging is not enabled, kernel KERN_DEBUG type logging is either

always off or always on until the next time kernel Image is recompiled to make

changes, and cannot be adjusted at runtime.

After dynamic debugging is enabled, the information of the KERN_DEBUG level of the

specified driver file, that is, the information of pr_debug(), dev_dbg(),

print_hex_dump_debug(), print_hex_dump_bytes(), printk(KERN_DEBUG “XXX“) can

be printed to the console.

By default, Linux kernel does not enable dynamic debugging. If it is enabled, you need

to set CONFIG_DYNAMIC_DEBUG=Y (default is N) and CONFIG_DEBUG_FS=Y

(default is Y) in imx_v8_defconfig or menuconfig. After the setting is successful,

compile it into a new kernel image and upload it to the TFTP directory of the board

in the same way.

3.1. If the user wants to view the KERN_DEBUG level print information of a driver file

when the kernel is running, the following command can be used to view the

KERN_DEBUG information of drivers/gpu/drm/bridge/sec-dsim.c, where "pfl" is

flags, p represents print log information, f represents print function name, and l

represents print code line number:

echo -n "file drivers/gpu/drm/bridge/sec-dsim.c +pfl " >

/sys/kernel/debug/dynamic_debug/control

dmesg |grep sec

Checked the source code of the Linux drivers/gpu/drm/bridge/sec-dsim.c driver, you

can see that the dev_dbg information has been printed.

3.2. If the user wants to view the KERN_DEBUG level print information of a driver file

when the kernel is started, and there is a development board offline, you can

modify bootargs in the following way. The following code modifies

drivers/gpu/drm/bridge/sec-dsim.c, and needs to modify dtb and connect an

external MIPI DSI panel:

u-boot=> env edit mmcargs

edit: setenv bootargs ${jh_clk} ${mcore_clk} console=${console} root=${mmcroot}

"dyndbg=\"file drivers/gpu/drm/bridge/sec-dsim.c +pfl"\"

u-boot=> saveenv

Saving Environment to MMC... Writing to MMC(1)... OK

u-boot=>

After starting the kernel, enter dmesg and you can see the following log:

Checked the source code of the Linux drivers/gpu/drm/bridge/sec-dsim.c driver, you

can see that the dev_dbg information has been printed.

4. Static debug:

If the user does not need to control the opening and closing of the Linux kernel

KERN_DEBUG type log at runtime like dynamic debugging, static debugging can be

used. This debugging method requires recompiling Linux kernel to make changes.

Specifically, you need to add #define DEBUG to the header of the driver file you want

to print.

Still taking the driver file drivers/gpu/drm/bridge/sec-dsim.c as an example, modify

the kernel and recompile it as follows. Upload it to the TFTP directory of the AIoT lab

development board.

diff --git a/drivers/gpu/drm/bridge/sec-dsim.c b/drivers/gpu/drm/bridge/sec-dsim.c

index fc9ca98f6ef7..a042be9c713c 100644

--- a/drivers/gpu/drm/bridge/sec-dsim.c

+++ b/drivers/gpu/drm/bridge/sec-dsim.c

@@ -14,6 +14,7 @@

 * GNU General Public License for more details.

 */

+#define DEBUG

 #include <asm/unaligned.h>

 #include <linux/clk.h>

 #include <linux/completion.h>

Even without setting CONFIG_DYNAMIC_DEBUG=Y, you can also output

KERN_DEBUG level print information to the console to achieve the same effect as

dynamic debugging:

5. Modify the kernel top-level Makefile to output the dev_dbg, pr_debug, etc. of all

driver files to the console (serial port):

he above dynamic debug and static debug methods require user clear which driver

file need to be debugged. If there is a problem during startup (such as hang at

startup), or there are many files to debug, or it is impossible to locate which file the

problem occurs in at the beginning of debugging, we hope to output the

KERN_DEBUG type logs of all files in the build-in to the console. How to debug in this

case?

We can add -DDEBUG after KBUILD_CFLAGS in the top-level Makefile of the Linux

kernel. It will set the DEBUG macro to a defined state, which is equivalent to adding

#define DEBUG to all function headers. The specific changes are as follows:

diff --git a/Makefile b/Makefile

index cffb83d7a0fb..1837d6f43a0e 100644

--- a/Makefile

+++ b/Makefile

@@ -570,7 +570,7 @@ KBUILD_CFLAGS := -Wall -Wundef -Werror=strict-

prototypes -Wno-trigraphs \

 -fno-strict-aliasing -fno-common -fshort-wchar -fno-PIE \

 -Werror=implicit-function-declaration -Werror=implicit-int \

 -Werror=return-type -Wno-format-security \

- -std=gnu11

+ -std=gnu11 -DDEBUG

 KBUILD_CPPFLAGS := -D__KERNEL__

 KBUILD_RUSTFLAGS := $(rust_common_flags) \

 --target=$(objtree)/rust/target.json \

After making the above changes, compilation Image may take a long time, especially

"make -j$(nproc)". You can use the "make Image" command to compile only the

kernel image without compiling the kernel module.

After replacing the kernel image, it takes a long time to boot into the file system,

about 230 seconds. A large number of irrelevant and repeated logs will appear in the

process, which may affect the boot sequence and even cause login failure. However,

these logs can still help us to solve problems during the boot process.

Checked the source code of the Linux drivers/gpu/drm/imx/imx8mp-hdmi-pavi.c

driver, you can see that the dev_dbg information has been printed.

6. Use initcall_debug to track initcall:

During the Linux kernel startup process, the initialization function is called through

the initcall mechanism. initcall_debug is a kernel parameter that can track initcall

and is used to locate kernel initialization problems.

If the user has a development board offline, can use the following command to

modify bootargs to enable initcall_debug:

setenv mmcargs "${mmcargs} initcall_debug loglevel=8"

saveenv

You can see that the initcall information of each function is printed to the console

during kernel startup. This information helps us to get more information and locate

problems during kernel startup and initialization.

Due to the security restrictions of the AIoT lab, the development board cannot modify

bootargs in the U-boot stage, and all are network booted. Users can fix the command

line by modifying imx_v8_defconfig in kernel Image according to the following steps:

When you start the board for the first time, find the kernel cmdline in dmesg logs:

console=ttymxc1,115200 root=/dev/nfs ip=dhcp

nfsroot=192.168.100.250:/opt/REAL/NFS/IMX8MPEVK-3-root,v3,tcp

Modify the defconfig file to enable initcall_debug:

diff --git a/arch/arm64/configs/imx_v8_defconfig

b/arch/arm64/configs/imx_v8_defconfig

index 85762b37006f..16d8a67b5bd3 100644

--- a/arch/arm64/configs/imx_v8_defconfig

+++ b/arch/arm64/configs/imx_v8_defconfig

@@ -1105,3 +1105,5 @@ CONFIG_CORESIGHT_STM=m

 CONFIG_CORESIGHT_CPU_DEBUG=m

 CONFIG_CORESIGHT_CTI=m

 CONFIG_MEMTEST=y

+CONFIG_CMDLINE_FORCE=y

+CONFIG_CMDLINE="ttymxc1,115200 root=/dev/nfs ip=dhcp

nfsroot=192.168.100.250:/opt/REAL/NFS/IMX8MPEVK-3-root,v3,tcp initcall_debug

loglevel=8"

You can also see that the initcall information of each function is printed to the console

at startup.

7. Debug of other modules: Such as drm debug

In addition to printk, dev_xxx, pr_xx series of prints, some modules have their own

exclusive prints. For example, the Linux DRM subsystem has DRM_DEBUG,

DRM_DEBUG_DRIVER, DRM_DEBUG_ATOMIC, DRM_DEBUG_KMS and other prints in

its driver. The definitions of these functions are in the include/drm/drm_print.h path,

and actually they also call the printk function.

DRM also defines several debug categories, such as:

* drm.debug=0x1 will enable CORE messages

 * drm.debug=0x2 will enable DRIVER messages

 * drm.debug=0x3 will enable CORE and DRIVER messages

 * ...

 * drm.debug=0x3f will enable all messages

After Linux boots, run following command:

echo 0x1ff > /sys/module/drm/parameters/debug

Or when compiling the kernel, modify the defconfig file to enable drm debug, which

will print all DRM related information to the console for easy debugging of display

related issues:

diff --git a/arch/arm64/configs/imx_v8_defconfig

b/arch/arm64/configs/imx_v8_defconfig

index 85762b37006f..16d8a67b5bd3 100644

--- a/arch/arm64/configs/imx_v8_defconfig

+++ b/arch/arm64/configs/imx_v8_defconfig

@@ -1105,3 +1105,5 @@ CONFIG_CORESIGHT_STM=m

 CONFIG_CORESIGHT_CPU_DEBUG=m

 CONFIG_CORESIGHT_CTI=m

 CONFIG_MEMTEST=y

+CONFIG_CMDLINE_FORCE=y

+CONFIG_CMDLINE="ttymxc1,115200 root=/dev/nfs ip=dhcp

nfsroot=192.168.100.250:/opt/REAL/NFS/IMX8MPEVK-3-root,v3,tcp

drm.debug=0x1FF loglevel=8"

After startup, DRM debug related information can be seen.

8. Manual WARN_ON(1), BUG_ON(1) to view the stack backtrace:

There are BUG_ON() and WARN_ON() statements in the kernel. When the

conditions in the brackets are met, an oops message will be thrown. We can use this

as a debugging technique. If we want to know how a function in the kernel is called,

we can add a WARN_ON(1) to the function and observe its calling relationship:

diff --git a/drivers/gpu/drm/bridge/sec-dsim.c b/drivers/gpu/drm/bridge/sec-dsim.c

index fc9ca98f6ef7..42f647c14e2e 100644

--- a/drivers/gpu/drm/bridge/sec-dsim.c

+++ b/drivers/gpu/drm/bridge/sec-dsim.c

@@ -1146,6 +1146,7 @@ struct dsim_pll_pms *sec_mipi_dsim_calc_pmsk(struct

sec_mipi_dsim *dsim)

 struct sec_mipi_dsim_range pr_new = *prange;

 struct sec_mipi_dsim_range sr_new = *srange;

+ WARN_ON(1);

 pll_pms = devm_kzalloc(dev, sizeof(*pll_pms), GFP_KERNEL);

 if (!pll_pms) {

 dev_err(dev, "Unable to allocate 'pll_pms'\n");

